Modelos de entrenamiento
Modelos de entrenamiento de inteligencia artificial
Cuando las empresas hablan de IA, suelen hablar de "datos de entrenamiento". Pero ¿qué significa eso? Recuerda que la inteligencia artificial con memoria limitada es una IA que mejora con el tiempo, ya que se entrena con datos nuevos. El aprendizaje automático es un subconjunto de la inteligencia artificial que usa algoritmos para entrenar datos y obtener resultados.
A grandes rasgos, suelen usarse tres tipos de modelos de aprendizaje en el aprendizaje automático:
El aprendizaje supervisado es un modelo de aprendizaje automático que asigna una entrada específica a un resultado mediante datos de entrenamiento etiquetados (datos estructurados). En términos simples, para entrenar un algoritmo que reconozca imágenes de gatos, se lo alimenta con imágenes etiquetadas como gatos.
El aprendizaje no supervisado es un modelo de aprendizaje automático que aprende patrones en función de datos no etiquetados (datos no estructurados). A diferencia del aprendizaje supervisado, el resultado final no se conoce con anticipación. En cambio, el algoritmo aprende de los datos y los clasifica en grupos en función de diversos atributos. Por ejemplo, el aprendizaje no supervisado es bueno para identificar patrones y realizar modelado descriptivo.
Además del aprendizaje supervisado y no supervisado, suele emplearse un enfoque mixto llamado aprendizaje semisupervisado, en el que solo se etiquetan algunos de los datos. En el aprendizaje semisupervisado, se conoce un resultado final, pero el algoritmo debe determinar cómo organizar y estructurar los datos para lograr los resultados deseados.
El aprendizaje por refuerzo es un modelo de aprendizaje automático que se puede describir en términos generales como “aprender haciendo”. Un "agente" aprende a realizar una tarea definida mediante prueba y error (un bucle de reacción) hasta que su rendimiento está dentro de un rango deseado. El agente recibe un refuerzo positivo cuando realiza la tarea de forma correcta y un refuerzo negativo cuando tiene bajo rendimiento. Un ejemplo de aprendizaje por refuerzo sería enseñarle a una mano robótica a recoger una pelota.

Comentarios
Publicar un comentario